# **12.3** Surface Area of Pyramids and Cones

Before

You found surface areas of prisms and cylinders.

Now

You will find surface areas of pyramids and cones.

Why?

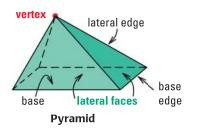
So you can find the surface area of a volcano, as in Ex. 33.

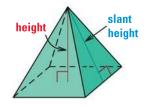


## **Key Vocabulary**

- pyramid
- vertex of a pyramid
- regular pyramid
- slant height
- cone
- vertex of a cone
- right cone
- · lateral surface

A **pyramid** is a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex, called the vertex of the pyramid. The intersection of two lateral faces is a lateral edge. The intersection of the base and a lateral face is a base edge. The height of the pyramid is the perpendicular distance between the base and the vertex.





Regular pyramid

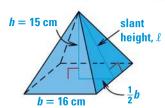
#### **NAME PYRAMIDS**

Pyramids are classified by the shapes of their i bases.

A <mark>regular pyramid</mark> has a regular polygon for a base and the segment joining the vertex and the center of the base is perpendicular to the base. The lateral faces of a regular pyramid are congruent isosceles triangles. The slant height of a regular pyramid is the height of a lateral face of the regular pyramid. A nonregular pyramid does not have a slant height.

#### EXAMPLE 1 Find the area of a lateral face of a pyramid

A regular square pyramid has a height of 15 centimeters and a base edge length of 16 centimeters. Find the area of each lateral face of the pyramid.



#### Solution

Use the Pythagorean Theorem to find the slant height  $\ell$ .

$$\ell^2 = h^2 + \left(\frac{1}{2}b\right)^2$$
 Write formula.

$$\ell^2 = 15^2 + 8^2$$
 Substitute for *h* and  $\frac{1}{2}b$ 

$$\ell^2 = 289$$
 Simplify

$$\ell=17$$
 Find the positive square root.



▶ The area of each triangular face is  $A = \frac{1}{2}b\ell = \frac{1}{2}(16)(17) = 136$  square

**SURFACE AREA** A regular hexagonal pyramid and its net are shown at the right. Let b represent the length of a base edge, and let  $\ell$  represent the slant height of the pyramid.



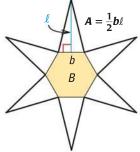
The area of each lateral face is  $\frac{1}{2}b\ell$  and the perimeter of the base is P=6b. So, the surface area S is as follows.

$$S = (Area of base) + 6(Area of lateral face)$$

$$S = B + 6\left(\frac{1}{2}b\ell\right)$$
 Substitute.

$$S = B + \frac{1}{2}(6b)\ell$$
 Rewrite  $6\left(\frac{1}{2}b\ell\right)$  as  $\frac{1}{2}(6b)\ell$ .

$$S = B + \frac{1}{2}P\ell$$
 Substitute *P* for 6*b*.



### **THEOREM**

## For Your Notebook

## **THEOREM 12.4** Surface Area of a Regular Pyramid

The surface area *S* of a regular pyramid is

$$S = B + \frac{1}{2}P\ell,$$

where B is the area of the base, P is the perimeter of the base, and  $\ell$  is the slant height.



$$S = B + \frac{1}{2}Pk$$

## EXAMPLE 2

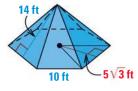
# Find the surface area of a pyramid

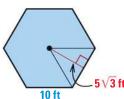
Find the surface area of the regular hexagonal pyramid.

#### **Solution**

For help with finding the area of regular polygons, see p. 762.

First, find the area of the base using the formula for the area of a regular polygon,  $\frac{1}{2}aP$ . The apothem a of the hexagon is  $5\sqrt{3}$  feet and the perimeter P is  $6 \cdot 10 = 60$  feet. So, the area of the base B is  $\frac{1}{2}(5\sqrt{3})(60) = 150\sqrt{3}$  square feet. Then, find the surface area.





$$S = B + \frac{1}{2}P\ell$$

Formula for surface area of regular pyramid

$$= 150\sqrt{3} + \frac{1}{2}(60)(14)$$

Substitute known values.

$$= 150\sqrt{3} + 420$$

Simplify.

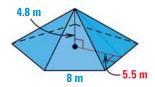
$$\approx 679.81$$

Use a calculator.

▶ The surface area of the regular hexagonal pyramid is about 679.81 ft².



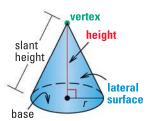
- 1. Find the area of each lateral face of the regular pentagonal pyramid shown.
- 2. Find the surface area of the regular pentagonal pyramid shown.



**CONES** A cone has a circular base and a vertex that is not in the same plane as the base. The radius of the base is the radius of the cone. The height is the perpendicular distance between the vertex and the base.

In a **right cone**, the segment joining the vertex and the center of the base is perpendicular to the base and the slant height is the distance between the vertex and a point on the base edge.

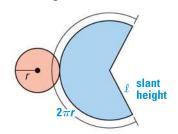
The lateral surface of a cone consists of all segments that connect the vertex with points on the base edge.



Right cone

**SURFACE AREA** When you cut along the slant height and base edge and lay a right cone flat, you get the net shown at the right.

The circular base has an area of  $\pi r^2$  and the lateral surface is the sector of a circle. You can use a proportion to find the area of the sector, as shown below.



$$\frac{\text{Area of sector}}{\text{Area of circle}} = \frac{\text{Arc length}}{\text{Circumference of circle}}$$
 
$$\frac{\text{Area of sector}}{\pi \ell^2} = \frac{2\pi r}{2\pi \ell}$$

Area of sector = 
$$\pi \ell^2 \cdot \frac{2\pi r}{2\pi \ell}$$

Area of sector =  $\pi r \ell$ 

Set up proportion.

Substitute.

Multiply each side by  $\pi \ell^2$ .

Simplify.

The surface area of a cone is the sum of the base area,  $\pi r^2$ , and the lateral area,  $\pi r \ell$ . Notice that the quantity  $\pi r \ell$  can be written as  $\frac{1}{2}(2\pi r)\ell$ , or  $\frac{1}{2}C\ell$ .

## **THEOREM**

## **THEOREM 12.5** Surface Area of a Right Cone

The surface area S of a right cone is

$$S = B + \frac{1}{2}C\ell = \pi r^2 + \pi r\ell,$$

where *B* is the area of the base, *C* is the circumference of the base, r is the radius of the base, and  $\ell$  is the slant height.





$$S = B + \frac{1}{2}C\ell = \pi r^2 + \pi r\ell$$

**ANOTHER WAY** You can use a

so  $\ell = 2 \cdot 5 = 10$ .

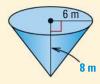
find  $\ell$ .

Pythagorean triple to

 $6 = 2 \cdot 3$  and  $8 = 2 \cdot 4$ ,

What is the surface area of the right cone?

- $\mathbf{A}$   $72\pi \,\mathrm{m}^2$
- **(B)**  $96\pi \,\mathrm{m}^2$
- **(C)**  $132\pi \,\mathrm{m}^2$
- **(D)**  $136\pi \,\mathrm{m}^2$



#### Solution

To find the slant height  $\ell$  of the right cone, use the Pythagorean Theorem.

$$\ell^2 = h^2 + r^2$$
 Write formula.

$$\ell^2 = 8^2 + 6^2$$
 Substitute.

$$\ell=10$$
 Find positive square root.



Use the formula for the surface area of a right cone.

$$S = \pi r^2 + \pi r \ell$$
 Formula for surface area of a right cone

$$= \pi(6^2) + \pi(6)(10)$$
 Substitute.  
=  $96\pi$  Simplify.

The correct answer is B. (A) (B) (C) (D)

# EXAMPLE 4

## Find the lateral area of a cone

**TRAFFIC CONE** The traffic cone can be approximated by a right cone with radius 5.7 inches and height 18 inches. Find the approximate lateral area of the traffic cone.



#### **Solution**

To find the slant height  $\ell$ , use the Pythagorean Theorem.

$$\ell^2 = 18^2 + (5.7)^2$$
, so  $\ell \approx 18.9$  inches.

Find the lateral area.

Lateral area = 
$$\pi r \ell$$
 Write formula.

$$=\pi(5.7)(18.9)$$
 Subst

Substitute known values.

Simplify and use a calculator.



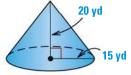
▶ The lateral area of the traffic cone is about 338.4 square inches.



### **GUIDED PRACTICE**

for Examples 3 and 4

- **3.** Find the lateral area of the right cone shown.
- **4.** Find the surface area of the right cone shown.



## **SKILL PRACTICE**

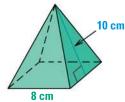
- 1. VOCABULARY Draw a regular square pyramid. Label its height, slant height, and base.
- 2. **\* WRITING** *Compare* the height and slant height of a right cone.

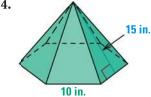
#### **EXAMPLE 1**

on p. 810 for Exs. 3-5

AREA OF A LATERAL FACE Find the area of each lateral face of the regular pyramid.

3.





**5.** 

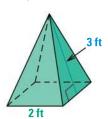


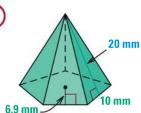
# **EXAMPLE 2**

on p. 811 for Exs. 6-9

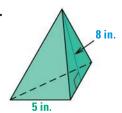
**SURFACE AREA OF A PYRAMID** Find the surface area of the regular pyramid. Round your answer to two decimal places.

6.





8.



**9. ERROR ANALYSIS** *Describe* and correct the error in finding the surface area of the regular pyramid.

$$5 = B + \frac{1}{2}P\ell$$

$$= 6^2 + \frac{1}{2}(24)(4)$$

$$= 84 \text{ ft}^2$$



on p. 813 for Exs. 10-17 LATERAL AREA OF A CONE Find the lateral area of the right cone. Round your answer to two decimal places.

10.



11.



12.

r = 1 in.

h = 4 in.

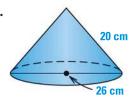


**SURFACE AREA OF A CONE** Find the surface area of the right cone. Round your answer to two decimal places.

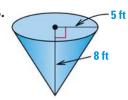
13.



14.



15.



**16. ERROR ANALYSIS** *Describe* and correct the error in finding the surface area of the right cone.

$$S = \pi(r^{2}) + \pi r^{2} \ell$$

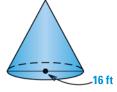
$$= \pi(36) + \pi(36)(10)$$

$$= 396\pi \text{ cm}^{2}$$
6 cm

- 17.  $\star$  MULTIPLE CHOICE The surface area of the right cone is  $200\pi$  square feet. What is the slant height of the cone?
  - **(A)** 10.5 ft
- **B** 17 ft

**©** 23 ft

**(D)** 24 ft

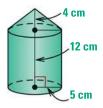


**VISUAL REASONING** In Exercises 18–21, sketch the described solid and find its surface area. Round your answer to two decimal places.

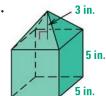
- 18. A right cone has a radius of 15 feet and a slant height of 20 feet.
- 19. A right cone has a diameter of 16 meters and a height of 30 meters.
- **20.** A regular pyramid has a slant height of 24 inches. Its base is an equilateral triangle with a base edge length of 10 inches.
- **21.** A regular pyramid has a hexagonal base with a base edge length of 6 centimeters and a slant height of 9 centimeters.

**COMPOSITE SOLIDS** Find the surface area of the solid. The pyramids are regular and the cones are right. Round your answers to two decimal places, if necessary.

22.



23.



24



- **25. TETRAHEDRON** Find the surface area of a regular tetrahedron with edge length 4 centimeters.
- **26. CHALLENGE** A right cone with a base of radius 4 inches and a regular pyramid with a square base both have a slant height of 5 inches. Both solids have the same surface area. Find the length of a base edge of the pyramid. Round your answer to the nearest hundredth of an inch.

# **PROBLEM SOLVING**

# example 2

on p. 811 for Ex. 27 **27. CANDLES** A candle is in the shape of a regular square pyramid with base edge length 6 inches. Its height is 4 inches. Find its surface area.

@HomeTutor for problem solving help at classzone.com

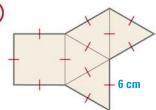
- **28. LAMPSHADE** A glass lampshade is shaped like a regular square pyramid.
  - **a.** Approximate the lateral area of the lampshade shown.
  - **b.** *Explain* why your answer to part (a) is not the exact lateral area.

@HomeTutor for problem solving help at classzone.com

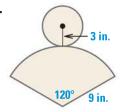


**USING NETS** Name the figure that is represented by the net. Then find its surface area. Round your answer to two decimal places.

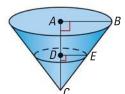




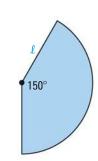
30



- **31.**  $\star$  **SHORT RESPONSE** In the figure, AC = 4, AB = 3, and DC = 2.
  - **a.** Prove  $\triangle ABC \sim \triangle DEC$ .
  - **b.** Find BC, DE, and EC.
  - c. Find the surface areas of the larger cone and the smaller cone in terms of  $\pi$ . *Compare* the surface areas using a percent.



- **32. MULTI-STEP PROBLEM** The sector shown can be rolled to form the lateral surface of a right cone. The lateral surface area of the cone is 20 square meters.
  - **a.** Write the formula for the area of a sector.
  - **b.** Use the formula in part (a) to find the slant height of the cone. *Explain* your reasoning.
  - **c.** Find the radius and height of the cone.



**33. VOLCANOES** Before 1980, Mount St. Helens was a conic volcano with a height from its base of about 1.08 miles and a base radius of about 3 miles. In 1980, the volcano erupted, reducing its height to about 0.83 mile.

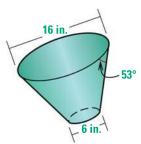
Approximate the lateral area of the volcano after 1980. (*Hint*: The ratio of the radius of the destroyed cone-shaped top to its height is the same as the ratio of the radius of the original volcano to its height.)





34. CHALLENGE An Elizabethan collar is used to prevent an animal from irritating a wound. The angle between the opening with a 16 inch diameter and the side of the collar is 53°. Find the surface area of the collar shown.

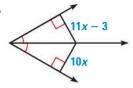


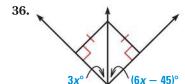


# **MIXED REVIEW**

Find the value of x. (p. 310)

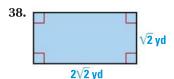
35

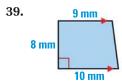




#### **PREVIEW**

Prepare for Lesson 12.4 in Exs. 37–39. In Exercises 37–39, find the area of the polygon. (pp. 720, 730)





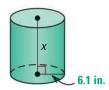
# QUIZ for Lessons 12.1-12.3

**1.** A polyhedron has 8 vertices and 12 edges. How many faces does the polyhedron have? (p. 794)

Solve for x given the surface area S of the right prism or right cylinder. Round your answer to two decimal places. (p. 803)

**2.** 
$$S = 366 \text{ ft}^2$$

3. 
$$S = 717 \text{ in.}^2$$

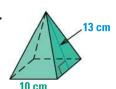


4. 
$$S = 567 \text{ m}^2$$

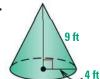


Find the surface area of the regular pyramid or right cone. Round your answer to two decimal places. (p. 810)

5.



6.



7.

